Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] We present and apply a generalized coarse-graining method of reducing the Becker-Doering model; originally formulated to describe the stepwise aggregation and fragmentation of clusters during nucleation. Previous formulations of the coarse-graining procedure have allowed a temporal rescaling of the coarse-grained reaction rates; this is generalized to allow the rescaling to depend on cluster size. The form of this factor is derived for general reaction rates and general mesh function so that the steady-state solution is preserved; in the case of an even mesh function the kinetics can also be accurately reproduced. With a size-dependent mesh function the equilibrium solution and the form of convergence to this state are matched for a specific example. Finally we consider reaction rates relevant to the classical nucleation theory of spherical cluster growth, and numerically compare solutions of the full system to the generalized coarse-grained system in both constant monomer and constant mass formulations, demonstrating the accuracy of the method
Primary Subject
Source
S0305-4470(03)59177-6; Available online at http://stacks.iop.org/0305-4470/36/7859/a32901.pdf or at the Web site for the Journal of Physics. A, Mathematical and General (ISSN 1361-6447) http://www.iop.org/; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Journal of Physics. A, Mathematical and General; ISSN 0305-4470;
; CODEN JPHAC5; v. 36(29); p. 7859-7888

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue