Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.026 seconds
AbstractAbstract
[en] Purpose: We had previously shown that the rate of spontaneous and radiation-induced apoptosis was significantly greater in well-differentiated compared to anaplastic Dunning prostate carcinomas. The goal of this study was to define the most useful assay for quantifying radiation-induced apoptotic cell death and to determine if measured rates of radiation-induced apoptosis in tumor cell populations can predict treatment outcome. Materials and Methods: The time course and extent of radiation-induced apoptosis after single doses of Cesium-137 gamma-rays were measured by five different assays. These included gross DNA degradation, nucleosome ladder formation, labeling of 3'-OH ends in DNA with an immunofluorescence probe, immunofluorescence vital stains (LIVE/DEAD[reg] EUKOLIGHTTM) and trypan blue. The majority of these studies were performed with DU-145 human prostate cells. Data was analyzed to determine the component of cell inactivation resulting from apoptosis with the modified linear quadratic equation, -1n (SF) = (αa + αp) D + βpD2, were αa represents cell inactivation by radiation-induced apoptosis, αp and βp represent cell death by proliferative mechanisms and D represents radiation dose. Results: These studies indicated that DU-145 cell death after radiation occurs over two distinct time periods. The first phase of death begins shortly after irradiation and plateaus within 16-24 hr. This process of cell death has properties consistent with apoptosis as determined by 3'-OH DNA end-labeling and nucleosome ladder assays. The second phase of cell death (determined by viability staining) begins approximately 48 hr after irradiation and continues until the remainder of inactivated cells express their death. This longer phase of cell inactivation probably represents proliferative cell death and other non-apoptotic mechanisms. The five different assays were performed on DU-145 cells 24 hr after irradiation with 10 Gy. Significant nucleosome ladders were detected by gel electrophoresis procedures but this technique is laborious and difficult to quantify. Centrifugation procedures of irradiation cells which had been pre-labeled with 3H-thymidine showed ∼18% of total cellular DNA to be fragmented within 12 hr, after which time the extent of DNA fragmentation plateaued. The labeling of 3'-OH ends in cellular DNA by the immunofluorescence reagent, ApopTag[reg], showed ∼15% of cells to undergo apoptotic degradation. Staining of irradiated cells with LIVE/DEAD[reg] EUKOLIGHTTM and trypan blue showed 20-25% cell death. Although the vital stain assays are not specific for apoptosis, the proportion of rapid cell death (within 24-48 hr) which they measure is close to that obtained with the apoptotic-specific assays. These studies indicate that 24 hr after irradiation with 10 Gy, approximately 20% of DU-145 cells undergo death by apoptosis. Survival curves constructed with different radiation doses indicate that this rapid mechanism of cell death follows single-hit kinetics and constitutes between 10-30% of the total α coefficient measured by clonogenic assays with this cell line. Conclusion: Two phases of cell death are observed after ionizing radiation of the DU-145 prostate cancer cell line. Rapid cell death occurs within ∼24 hr and appears to correlate with apoptotic cell death. The vital stains, LIVE/DEAD[reg] EUKOLIGHTTM and trypan blue, yield quantitatively similar estimates of rapid cell killing to the apoptosis-specific assays. We are currently extending these studies to other human prostate tumor cell lines and to tumor cells released from human prostate biopsies. Such assays may provide additional prognostic information for predicting radiotherapy outcome of patients receiving radiotherapy
Primary Subject
Secondary Subject
Source
Copyright (c) 1995 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016;
; CODEN IOBPD3; v. 32(971); p. 203

Country of publication
ANIMAL CELLS, BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, BIOASSAY, BIOLOGICAL EFFECTS, BODY, CESIUM ISOTOPES, DISEASES, DOSES, GLANDS, INTERMEDIATE MASS NUCLEI, ISOTOPES, MALE GENITALS, MEDICINE, NUCLEAR MEDICINE, NUCLEI, ODD-EVEN NUCLEI, ORGANS, RADIATION EFFECTS, RADIOISOTOPES, RADIOLOGY, THERAPY, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue