Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.012 seconds
AbstractAbstract
[en] Purpose: Carbon-loaded thermoluminescent dosimeters (TLDs) are designed for surface/skin dose measurements. Following 4 years in clinical use at the Mater Hospital, the accuracy and clinical usefulness of the carbon-loaded TLDs was assessed. Methods and Materials: Teflon-based carbon-loaded lithium fluoride (LiF) disks with a diameter of 13 mm were used in the present study. The TLDs were compared with ion chamber readings and TLD extrapolation to determine the effective depth of the TLD measurement. In vivo measurements were made on patients receiving open-field treatments to the chest, abdomen, and groin. Skin entry dose or entry and exit dose were assessed in comparison with doses estimated from phantom measurements. Results: The effective depth of measurement in a 6 MV therapeutic x-ray beam was found to be about 0.10 mm using TLD extrapolation as a comparison. Entrance surface dose measurements made on a solid water phantom agreed well with ion chamber and TLD extrapolation measurements, and black TLDs provide a more accurate exit dose than the other methods. Under clinical conditions, the black TLDs have an accuracy of ± 5% (± 2 SD). The dose predicted from black TLD readings correlate with observed skin reactions as assessed with reflectance spectroscopy. Conclusion: In vivo dosimetry with carbon-loaded TLDs proved to be a useful tool in assessing the dose delivered to the basal cell layer in the skin of patients undergoing radiotherapy
Primary Subject
Secondary Subject
Source
0360301695002744; Copyright (c) 1995 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016;
; CODEN IOBPD3; v. 33(4); p. 943-950

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue