Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Safronov, A.N.; Safronov, A.A.
Abstracts of the sixth international conference on modern problems of nuclear physics2006
Abstracts of the sixth international conference on modern problems of nuclear physics2006
AbstractAbstract
[en] Full text: A nonperturbative character of QCD at low and intermediate energies generates serious mathematical difficulties in describing the dynamics of hadron-hadron interactions in terms quark-gluon degrees of freedom. Therefore much effort has gone in past years into developing QCD-motivated approaches that formulate the theory of strong interaction in terms of hadron degrees of freedom. The path-integral technique together with idea of spontaneous chiral-symmetry breaking leads to Effective Field Theory (EFT) [1]. Unfortunately EFT can be applied to description of hadron-hadron interactions only at very low energies. On the other hand, meson theories of nuclear forces have long since been used to describe the properties of nucleon systems and scattering processes. Now it is not quite clear, up to what distances the meson-exchange pattern of nuclear forces is valid. Recently the new relativistic approach to the problem of constructing effective hadron-hadron interaction operators has been proposed [2-4] on the basis of analytic S-matrix theory and Gelfand-Levitan-Marchenko-Martin methods for solving the inverse quantum scattering problem. In this approach effective potential is defined as a local operator in a partial-wave equation of the quasipotential type such that it generates on-shell relativistic (Feynman) scattering amplitude that has required discontinuities at dynamical cuts. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of subprocesses involving on-mass-shell particles off the physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, EFT can be used to calculate the discontinuities across dynamical-cut segments closest to the physical region. In [2-4] we have examined the basic features of the proposed approach. Attention has been given primarily to analyzing the new mechanism of formation of a short-range repulsive core. In the given work this approach is generalized for constructing effective hadron-hadron interaction operators in framework multichannel formalism in arbitrary angular momentum states taking into account effects of inelasticity. The methods of taking into account mechanisms of formation a quark-gluon compound states in hadron-hadron interactions are elaborated also. The developed methods are applied to constructing nucleon-nucleon interaction operators in different partial-wave states. The boson-exchange model was used to calculate the discontinuities of the partial-wave scattering amplitudes taking into account π, σ, ρ, ω, η, a0 -meson contributions. The effective nucleon-nucleon potentials in our approach (as against the one-boson-exchange model in usual sense) contain nonlinear contributions on dynamic discontinuities of partial-wave scattering amplitudes, which play essential role at small distances. Note that in realistic Bonn potential model [5] the short-range repulsion is due to ω-meson exchange contribution. It is required in this theory non-realistically large value (≅20 ) of the coupling constant gωNN2/4π. The value of this coupling constant in our approach is consistent with available experimental data [6] and also with theoretical quark-model calculations. The theoretical predictions of the proposed approach are in fairly good agreement with partial-wave-analysis data for laboratory kinetic energies of incident nucleon up to T=1.5-2.0 GeV. The developed approach is applied also to pion-nucleon scattering at kinetic energies of incident pion up to T=2.0 GeV. This work was supported by the Russian Foundation for Basic Research under the project No 04-02-16967. (author)
Primary Subject
Source
Yuldashev, B.; Fazylov, M.; Ibragimova, E.; Salikhbaev, U. (eds.); Uzbekistan Academy of Sciences, Institute of Nuclear Physics, Tashkent (Uzbekistan). Funding organisation: The Abdus Salam International Center for Theoretical Physics, Trieste (Italy); Science and Technology Center in Ukraine, Kiev (Ukraine); CHEMOTRADE GmbH Co. KG, Duesseldorf (Germany); Lawrence Livermore National Laboratory, University of California (United States); Zimmermann BCS Stones LTD, Harxheim, (Germany); Navoi Mining and Metallurgical Complex, Navoi (Uzbekistan); 'Radiopreparat' Enterprise, Tashkent (Uzbekistan); Physical Technical Institute, Science Association 'Physics-Sun', Uzbekistan Academy of Sciences, Tashkent (Uzbekistan); Joint Venture 'Tezintom', Tashkent (Uzbekistan); 'Tezlatgich' Enterprise, Tashkent (Uzbekistan); Almalyk Mining and Metallurgical Complex, Almalyk (Uzbekistan); 390 p; Sep 2006; p. 98-99; 6. International conference on modern problems of nuclear physics; Tashkent (Uzbekistan); 19-22 Sep 2006; 6 refs.
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
ANGULAR MOMENTUM, CHIRAL SYMMETRY, COUPLING CONSTANTS, DEGREES OF FREEDOM, GEV RANGE, GLUONS, KINETIC ENERGY, NONLINEAR PROBLEMS, NUCLEAR FORCES, NUCLEON-NUCLEON POTENTIAL, OBE MODEL, OMEGA BARYONS, PARTIAL WAVES, PION-NUCLEON INTERACTIONS, QUANTUM CHROMODYNAMICS, QUARK MODEL, RELATIVISTIC RANGE, S MATRIX, SCATTERING AMPLITUDES, SHELLS, STRONG INTERACTIONS
AMPLITUDES, BARYONS, BASIC INTERACTIONS, BOSON-EXCHANGE MODELS, BOSONS, COMPOSITE MODELS, ELEMENTARY PARTICLES, ENERGY, ENERGY RANGE, FERMIONS, FIELD THEORIES, HADRON-HADRON INTERACTIONS, HADRONS, HYPERONS, INTERACTIONS, MATHEMATICAL MODELS, MATRICES, MESON-BARYON INTERACTIONS, MESON-NUCLEON INTERACTIONS, PARTICLE INTERACTIONS, PARTICLE MODELS, PERIPHERAL MODELS, POTENTIALS, QUANTUM FIELD THEORY, STRANGE PARTICLES, SYMMETRY
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue