Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.033 seconds
Sattari-Far, Iradi; Andersson, Magnus
Swedish Nuclear Power Inspectorate, Stockholm (Sweden)2006
Swedish Nuclear Power Inspectorate, Stockholm (Sweden)2006
AbstractAbstract
[en] Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of different clad components. Measurement of cladding residual stresses in a decommissioned reactor pressure vessel head, which was exposed to service conditions (pressure test, temperature, neutron irradiation, etc.), and the results from the cladding in a cut-out-piece, which did not experience any service or test pressure, basically showed similar profiles. Considering the low scatter and the reproducible data, the hole-drilling technique is recommended in measurement of the peak of the cladding residual stresses. The profile and magnitude of the cladding residual stresses depend mainly upon cladding composition, cladding thickness, clad component geometry and clad component temperature. The peak of the cladding residual stresses is actually about 2-3 mm under the surface of the clad layer, and values in the range of 150 and 500 MPa are reported. Fracture assessments on different clad components at different loading conditions reveal that fracture assessments based on LEFM and ASME Kk curve lead to unrealistic conservative results, and the cladding residual stresses are of importance for surface crack behaviour, especially under cold loads. The NESC projects have shown that the Master Curve methodology can give good predictions of the conducted experiments. It is reasonable to assume a peak value of cladding residual stresses in the whole clad layer to be equal to the yield strength of the cladding material (around 300 MPa) at room temperature. Providing that the clad component has received PWHT, it can be assumed no residual stresses in the underlying base material. For the nuclear pressure vessel, it is also reasonable to assume that the cladding stress free temperature is at the operation temperature of the vessel (around 300 deg C). It has been shown that the cladding residual stresses have negligible influence on subclad crack behaviour in clad components (receiving PWHT). It has also been shown that the crack growth for subclad cracks would be towards the base material direction, and the clad layer remains mainly intact during the loading. However, for the clad nozzles, significant tensile stresses can also exist in the base material, depending on the clad thickness and positions around the nozzle. This may be of importance for fracture assessment of subclad cracks
Primary Subject
Source
Jun 2006; 78 p; ISSN 1104-1374;
; PROJECT SKI 2005/615/21191; Also available from: http://www.ski.se; 31 refs., 42 figs., 11 tabs.

Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL