Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] One important factor to optimize the NDT equipment and NDT procedure is to know the characteristics of the specific defects being sought for in each case. Thus, access is necessary to reliable morphology data of defects from all possible degradation mechanisms in all existing materials of the components that are subject to the NDT. In 1994 the Swedish Nuclear Power Inspectorate (SKI) initiated a project for compiling crack morphology data based on systematic studies of cracks that have been observed in different plants (nuclear and non-nuclear) in order to determine typical as well as more extreme values of e.g. orientation, width and surface roughness. Although, a large number of identified cracking incidents was covered by the work it was recognised that further studies were needed to increase the data base, and thereby getting more confidence in the use of different crack characteristic data for NDT development and qualification purposes. That is the major reason why the present work was initiated. A thorough review of the SKI archives was performed aiming to find useful material from the time period between 1994 and today to compile complementary data and produce an update. Furthermore, older material was collected and evaluated. Thus, the data cover cracking found within the time period 1977-2003. In addition, useful material was supplied by the Swedish nuclear power plants. The evaluation and presentation of the results are similar to the 1994 study, with a few exceptions. The base for the evaluation is failure analysis reports, where the crack morphology parameters were measured from photos on cracked surfaces or cross sections through cracks. The resulting data were divided into seven groups depending on the cracking mechanism/material group combination. The data groups are: IGSCC in austenitic stainless steels; IGSCC in nickel base alloys; IDSCC in nickel base weld metal; TGSCC in austenitic stainless steels Thermal fatigue in austenitic stainless steels; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically, TGSCC is branched both in surface and through thickness direction. The crack orientation shows a random distribution and the number of cracks is large. The crack surface roughness show low values and the crack width is typically medium range compared with the other groups. A large number of randomly oriented cracks are typical for thermal fatigue. However, single or few cracks with similar orientation occur. In the through thickness direction straight, non-branched cracking oriented in right angle to the surface is most common. The crack surface roughness is of medium range and larger than for mechanical fatigue. Typically straight, single cracking oriented parallel with stress raisers is common for mechanical fatigue. In the through thickness direction most cracks are straight, non branched and oriented in right angle to the surface. The crack surface roughness is the smallest and the correlation length the highest of all groups. Solidification cracks occur equally frequent parallel as well as transversal to the weld. A large number of cracks are common. In the through thickness direction the cracks seldom show branching and is most often oriented close to 90 deg to the surface. The crack surface roughness is in the medium range and far below the one for IDSCC, which was not expected
Primary Subject
Source
May 2006; 92 p; ISSN 1104-1374;
; PROJECT SKI 14.43-200543105; Also available from: http://www.ski.se; 5 refs., 88 figs., 39 tabs.

Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL