Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
Braffort, P.; Chaigne, M.
CEA Saclay, 91 - Gif-sur-Yvette (France)1958
CEA Saclay, 91 - Gif-sur-Yvette (France)1958
AbstractAbstract
[en] 1) Introduction: The difficulties of the formulation of the equations of phenomena occurring during the operation of a fusion reactor are underlined. 2) The possibilities presented by analog computation of the solution of nonlinear differential equations are enumerated. The accuracy and limitations of this method are discussed. 3) The analog solution in the stationary problem of the measurement of the discharge confinement is given and comparison with experimental results. 4) The analog solution of the dynamic problem of the evolution of the discharge current in a simple case is given and it is compared with experimental data. 5) The analog solution of the motion of an isolated ion in the electromagnetic field is given. A spatial field simulator used for this problem (bidimensional problem) is described. 6) The analog solution of the preceding problem for a tridimensional case for particular geometrical configurations using simultaneously 2 field simulators is given. 7) A method of computation derived from Monte Carlo method for the study of dynamic of plasma is described. 8) Conclusion: the essential differences between the analog computation of fission reactors and fusion reactors are analysed. In particular the theory of control of a fusion reactor as described by SCHULTZ is discussed and the results of linearized formulations are compared with those of nonlinear simulation. (author)
[fr]
1) Introduction. On souligne les difficultes que presente la mise en equation des phenomenes mis en jeu lors du fonctionnement d'un reacteur a fusion. On selectionne un certain nombre d'equations generalement utilisees et on montre les impossibilites analytiques auxquelles on se heurte alors. 2) On rappelle les possibilites du calcul analogique pour la resolution des systemes differentiels non lineaires et on indique la precision de la methode ainsi que ses limitations. 3) On decrit la resolution analogique du probleme statique de la mesure du confinement de la decharge dans le cas stationnaire et l'on compare avec les resultats de l'experience. 4) On decrit la resolution analogique du probleme dynamique de l'evolution du courant de decharge dans un cas simple et l'on compare avec les resultats de l'experience. 5) On decrit la resolution analogique du mouvement des ions isoles dans un champ electromagnetique et l'on decrit le simulateur de champ spatial utilise dans ce probleme (probleme bidimensionnel). 6) On decrit la resolution analogique du probleme precedent dans le cas tridimensionnel pour des geometries particulieres (notamment toroidale) grace a l'emploi simultane de deux simulateurs de champ. 7) On decrit une methode de calcul derivee de la methode de Monte-Carlo, susceptible de s'adapter a l'etude de la dynamique des plasmas et l'on decrit le materiel de commutation-memorisation utilise. 8) Conclusion: On indique la difference profonde que presentent les calculs analogiques pour l'etude des reacteurs a fission et a fusion. On discute notamment la theorie du controle presentee par SCHULTZ en comparant les resultats du calcul linearise a ceux de la simulation non lineaire. (auteur)Original Title
Automatisation des calculs non lineaires dans la theorie des reacteurs a fusion
Primary Subject
Source
1958; 33 p; 20 refs.
Record Type
Report
Report Number
Country of publication
ANALOG SYSTEMS, AUTOMATION, BOLTZMANN EQUATION, CHARGED-PARTICLE TRANSPORT, ELECTRIC DISCHARGES, ELECTROMAGNETIC FIELDS, FUNCTION GENERATORS, IONIC CONDUCTIVITY, LORENTZ FORCE, MAXWELL EQUATIONS, MONTE CARLO METHOD, NONLINEAR PROBLEMS, PLASMA DENSITY, PLASMA SIMULATION, SPACE-TIME, SPATIAL DISTRIBUTION, TEMPERATURE DEPENDENCE, THERMONUCLEAR REACTORS, TOROIDAL CONFIGURATION
ANNULAR SPACE, CALCULATION METHODS, CLOSED CONFIGURATIONS, CONFIGURATION, DIFFERENTIAL EQUATIONS, DISTRIBUTION, ELECTRIC CONDUCTIVITY, ELECTRICAL PROPERTIES, ELECTRONIC EQUIPMENT, EQUATIONS, EQUIPMENT, INTEGRO-DIFFERENTIAL EQUATIONS, KINETIC EQUATIONS, MAGNETIC FIELD CONFIGURATIONS, PARTIAL DIFFERENTIAL EQUATIONS, PHYSICAL PROPERTIES, RADIATION TRANSPORT, SIMULATION, SPACE
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue