Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] This report deals with the experimental study of forced heat convection in annular spaces through which flow of air is passing when a uniform heat flux is dissipated across the inner wall. These observations took place chiefly in the region where thermal equilibrium are not yet established. Amongst other things it became apparent that, both in the region where thermal equilibrium conditions are on the way to establishment and where they are already established, the following relationship held good: the longitudinal temperature gradient, either on the wall or in the fluid stream, is proportional to the heat flux dissipated q, and inversely proportional to the average flow rate V: dT/dx = B (q/V). From this result the next step is to express the variations of the local convection coefficient α (or of the Margoulis number M) in a relationship of the form: 1/M = ψ(V) + F(x). If this relationship is compared with the classical empirical relationship α = KVn (where n is close to 0.8), the relationship: 1/M = ξV1-n + F(x) is obtained (ξ is a constant for a given annular space); from this it was possible to coordinate the whole set of experimental results. (author)
[fr]
Il s'agit precisement de l'etude experimentale de la convection forcee de la chaleur dans des espaces annulaires parcourus par de l'air en ecoulement turbulent, lorsqu'on dissipe a travers la paroi interieure un flux de chaleur uniforme. Ces observations ont eu lieu principalement dans la region ou le regime thermique n'est pas encore etabli. Il est apparu, entre autre, qu'il existait, tant dans la region ou le regime thermique est en voie d'etablissement qu'en regime etabli, la relation suivante: le gradient longitudinal des temperatures, que ce soit sur la paroi ou dans l'ecoulement fluide, est proportionnel au flux de la chaleur dissipee q, et inversement proportionnel a la vitesse moyenne V de l'ecoulement: dT/dx = B (q/V). Ce resultat a pour consequence de traduire les variations du coefficient local de convection α (ou du nombre de Margoulis M), dans une relation de la forme: 1/M = ψ(V) + F(x). Si on rapproche de cette relation, la relation empirique classique, α = KVn (ou n est voisin de 0,8), on obtient la relation: 1/M = ξV1-n + F(x) (ξ est une constante pour un espace annulaire donne), au moyen de laquelle a pu etre coordonne l'ensemble de tous les resultats experimentaux. (auteur)Original Title
Convection forcee de la chaleur dans les espaces annulaires
Primary Subject
Source
Feb 1960; 92 p; 15 refs.; These ES sciences physiques
Record Type
Report
Literature Type
Thesis/Dissertation
Report Number
Country of publication
AIR FLOW, ANNULAR SPACE, ENERGY LOSSES, FLOW RATE, FLUID-STRUCTURE INTERACTIONS, FORCED CONVECTION, HEAT FLUX, PITOT TUBES, PRESSURE DROP, TEMPERATURE DISTRIBUTION, TEMPERATURE GRADIENTS, TEMPERATURE MEASUREMENT, THERMAL CONDUCTIVITY, THERMAL EQUILIBRIUM, THERMAL HYDRAULICS, THERMOCOUPLES, TURBULENT FLOW, VELOCITY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue