Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Glamheden, Rune; Maersk Hansen, Lars; Fredriksson, Anders; Bergkvist, Lars; Markstroem, Ingemar; Elfstroem, Mats
Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)2007
Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)2007
AbstractAbstract
[en] This project aims at demonstrating the theoretical approach developed by SKB for determination of mechanical properties of large deformation zones, in particular the Singoe deformation zone. Up to now, only bedrock and minor deformation zones have been characterized by means of this methodology, which has been modified for this project. The Singoe deformation zone is taken as a reference object to get a more comprehensive picture of the structure, which could be incorporated in a future version of the SDM of Forsmark. Furthermore, the Singoe Zone has been chosen because of available data from four tunnels. Scope of work has included compilation and analysis of geological information from site investigations and documentation of existing tunnels. Results have been analyzed and demonstrated by means of RVS-visualization. Numerical modelling has been used to obtain mechanical properties. Numerical modelling has also been carried out in order to verify the results by comparison of calculated and measured deformations. Compilation of various structures in the four tunnels coincides largely with a magnetic anomaly and also with the estimated width. Based on the study it is clear that the Singoe deformation zone has a heterogeneous nature. The number of fracture zones associated with the deformation zone varies on either side of the zone, as does the transition zone between host rock and the Singoe zone. The overall impression from the study is that the results demonstrate that the methodology used for simulating of equivalent mechanical properties is an applicable and adequate method, also in case of large deformation zones. Typical rock mechanical parameters of the Singoe deformations that can be used in the regional stress model considering the zone to be a single fracture are: 200 MPa/m in normal stiffness, 10-15 MPa/m in shear stiffness, 0.4 MPa in cohesion and 31.5 degrees in friction angle
Primary Subject
Source
Feb 2007; 81 p; ISSN 1402-3091;
; Also available from: http://www.skb.se/upload/publications/pdf/R-07-06webb.pdf; 26 refs., 63 figs., 47 tabs.

Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue