Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] The electrical characteristics of Schottky barriers formed on n-type cadmium diphosphide are studied. It is established that the space-charge region at the metal-semiconductor interface represents in fact a Schottky layer formed owing to a high concentration of deep-level centers. The charge transport in the conducting direction for these structures is related to the above-barrier emission of electrons and is consistent with the diffusion theory for one or two types of charge carriers. The high concentration of ionized centers in the space-charge region gives rise to the tunneling mechanism of breakdown in the blocking direction. The frequency dependences of the complex conductance are governed by the exchange of charge carriers between the conduction band and donors that specify the conductivity type of the material and also by the recharing of the centers with a large depth of levels. Good agreement between the reported results and the theory is obtained
Primary Subject
Source
Copyright (c) 2006 Nauka/Interperiodica; Article Copyright (c) 2006 Pleiades Publishing, Inc.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue