Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] An air-ingress accident in a Very High Temperature Gas-Cooled Reactor (VHTR) is anticipated to cause severe changes to graphite density and mechanical strength by an oxidation process that has many side effects. However, quantitative estimations have not yet been performed. This study focuses on predicting the changes in graphite density and mechanical strength via thermal hydraulic system analysis code. In order to analyze the change in graphite density, a simple graphite burn-off model was developed. The model is based on the similarities between a parallel electrical circuit and graphite oxidation. It was used to determine overall changes in the graphite's geometry and density. The model was validated by comparing its results to experimental data that was obtained for several temperatures. In the experiment, cylindrically shaped graphite specimens were oxidized in an electrical furnace and the variations of its mass were measured against time. The experiment's range covered temperatures between 6000 C and 9000 C. Experimental data validated the model's accuracy. Finally, the developed model along with other comprehensive graphite oxidation models was integrated into the VHTR system analysis code, GAMMA. GT-MHR 600 MWt reactor was selected as a reference reactor. Based on the calculation, the main oxidation process was observed 5.5 days after the accident when followed by natural convection. The core maximum temperature reached 16000 C, but never exceeded the maximum temperature criteria, 18000 C. However, the oxidation process did significantly decrease the density of bottom reflector, making it vulnerable to mechanical stress. The stress on the bottom reflector is greatly increased because it sustains the reactor core. The calculation proceeded until 11 days after the accident, resulting in an observed 4.5% decrease in density and a 25% reduction of mechanical strength
Primary Subject
Source
INL/JOU--07-12776; AC07-99ID-13727
Record Type
Journal Article
Journal
Nuclear Engineering and Design (Online); ISSN 1872-759X;
; v. 238(4); p. 837-847

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue