Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.012 seconds
Luber, E; Mohammadi, R; Ophus, C; Mitlin, D; Lee, Z; Dahmen, U; Radmilovic, V; Nelson-Fitzpatrick, N; Evoy, S; Westra, K, E-mail: VRRadmilovic@lbl.gov, E-mail: dmitlin@ualberta.ca2008
AbstractAbstract
[en] Metallic structural components for micro-electro-mechanical/nano-electro-mechanical systems (MEMS/NEMS) are promising alternatives to silicon-based materials since they are electrically conductive, optically reflective and ductile. Polycrystalline mono-metallic films typically exhibit low strength and hardness, high surface roughness, and significant residual stress, making them unusable for NEMS. In this study we demonstrate how to overcome these limitations by co-sputtering Ni-Mo. Detailed investigation of the Ni-Mo system using transmission electron microscopy and high-resolution transmission electron microscopy (TEM/HRTEM), x-ray diffraction (XRD), nanoindentation, and atomic force microscopy (AFM) reveals the presence of an amorphous-nanocrystalline microstructure which exhibits enhanced hardness, metallic conductivity, and sub-nanometer root mean square (RMS) roughness. Uncurled NEMS cantilevers with MHz resonant frequencies and quality factors ranging from 200-900 are fabricated from amorphous Ni-Mo. Using a sub-regular solution model it is shown that the electrical conductivity of Ni-Mo is in excellent agreement with Bhatia's structural model of electrical resistivity in binary alloys. Using a Langevin-type stochastic rate equation the structural evolution of amorphous Ni-Mo is modeled; it is shown that the growth instability due to the competing processes of surface diffusion and self-shadowing is heavily damped out due to the high thermal energies of sputtering, resulting in extremely smooth films
Primary Subject
Source
S0957-4484(08)63067-6; Available from http://dx.doi.org/10.1088/0957-4484/19/12/125705; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Nanotechnology (Print); ISSN 0957-4484;
; v. 19(12); [7 p.]

Country of publication
ATOMIC FORCE MICROSCOPY, BINARY ALLOY SYSTEMS, ELECTRIC CONDUCTIVITY, ELECTROMECHANICS, HARDNESS, METALS, MHZ RANGE, MICROSTRUCTURE, MORPHOLOGY, NANOSTRUCTURES, NEM, POLYCRYSTALS, QUALITY FACTOR, REACTION KINETICS, SILICON, SPUTTERING, STOCHASTIC PROCESSES, STRUCTURAL MODELS, SURFACES, THIN FILMS, TRANSMISSION ELECTRON MICROSCOPY, X-RAY DIFFRACTION
ALLOY SYSTEMS, ANTIMITOTIC DRUGS, COHERENT SCATTERING, CRYSTALS, DIFFRACTION, DIMENSIONLESS NUMBERS, DRUGS, ELECTRICAL PROPERTIES, ELECTRON MICROSCOPY, ELEMENTS, FILMS, FREQUENCY RANGE, IMIDES, KINETICS, MECHANICAL PROPERTIES, MECHANICS, MICROSCOPY, ORGANIC COMPOUNDS, ORGANIC NITROGEN COMPOUNDS, PHYSICAL PROPERTIES, RADIOSENSITIZERS, RESPONSE MODIFYING FACTORS, SCATTERING, SEMIMETALS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue