Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] The thermo fluid dynamic characteristics of natural convection flow depend strongly on thermal boundary condition such as the spatial and temporal variation of heat flux on the pool wall boundaries. In general the natural convection heat transfer phenomena involving the bottom heat generation are represented by the Rayleigh number, Ra, which quantifies the bottom heat source and hence the strength of the buoyancy force. This work focuses on natural convection in which the density gradient is due to a temperature gradient and the body force is gravitational. The presence of a fluid density gradient in a gravitational field does not ensure the existence of natural convection currents, however, in an apparatus enclosed by two horizontal plates of different temperature. The temperature of the lower plate exceeds that of the upper plate, and the density decreases in the direction of the gravitational force. The LIDO (Liquid Internal Dynamics Operation) tests are conducted in a horizontal circular layer 500 mm in diameter and 220 mm in height using fluid, whose thermophysical properties are typified by the Prandtl number, Pr. The tests cover the range of 3x105 < Ra < 1x1010 and 0.02 < Pr < 2.22 Tests are conducted with air, water and Wood's metal (Pb-Bi-Sn-Cd) as simulant to determine the Nusselt number, Nu. The upper and side walls are cooled, while the lower wall is heated at uniform temperatures
Primary Subject
Source
Korean Nuclear Society, Daejeon (Korea, Republic of); [1 CD-ROM]; May 2008; [2 p.]; 2008 spring meeting of the KNS; Kyeongju (Korea, Republic of); 29-30 May 2008; Available from KNS, Daejeon (KR); 2 refs, 4 figs, 1 tab
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue