Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
Yamakawa, S; Hyodo, S; Okazaki-Maeda, K; Kohyama, M, E-mail: e1044@mosk.tytlabs.co.jp2008
AbstractAbstract
[en] Platinum supported on a carbon carrier is widely used as a catalyst for polymer electrolyte membrane fuel cells. The catalytic activity is significantly affected by the size distribution and morphologies of the platinum particles. The objective of this study is to extend the phase-field approach to describe the formation process of platinum particles onto the substrate. The microstructural evolution of a nanoparticle was represented by the temporal evolution of the field variables related to the platinum concentration, long-range crystallographic ordering and phase transition. First-principles calculations were performed in order to estimate the interaction energies between several different types of platinum clusters and a graphene sheet. The platinum density profile concentrated over the substrate surface led to the formation of three-dimensional islands in accordance with the Volmer-Weber mode of growth. The size distributions of the platinum particles were sensitive to the heterogeneity of the substrate surface and to the competitive nucleation and growth processes
Primary Subject
Source
IVC-17: 17. international vacuum congress; Stockholm (Sweden); 2-6 Jul 2007; ICSS-13: 13. international conference on surface science; Stockholm (Sweden); 2-6 Jul 2007; ICN+T 2007: International conference on nanoscience and technology; Stockholm (Sweden); 2-6 Jul 2007; Available from http://dx.doi.org/10.1088/1742-6596/100/7/072042; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Journal of Physics. Conference Series (Online); ISSN 1742-6596;
; v. 100(7); [4 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue