Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] High speed, well-collimated plasma jets were generated in the interaction of defocused single laser beam with planar, massive Cu target. The experiment was carried out at the iodine laser facility (Prague Asterix Laser System--PALS) using the third harmonic beam (0.438 μm) with a pulse duration of 250 ps (FWHM) and an energy of 100 J. The information about geometry of plasma expansion, plasma dynamics and electron density were obtained by means of a 3-frame interferometric system. The plasma jet parameters reach the following values: the velocity up to 7x107 cm/s, the internal Mach number greater than 10 and the electron density above 1019 cm-3. The jet characteristics are appropriate for the astrophysical and ICF applications. To ensure the interaction of this jet with gas or plasma as an ambient medium, a high-pressure supersonic gas nozzle was used, which created a cylindrical column of Ar or He. The results of first experiments dedicated to studies of collision of such a jet with a gas cloud are also presented. They clearly show the effect of shocks formation in ambient gases (He and Ar) due to the jet action. In the case of He the shock waves have usually a conical shape with a thickness of 1-1.5 mm, whereas in the case of Ar, the shock wave configuration is more complex and its thickness is less than 1 mm
Primary Subject
Secondary Subject
Source
PLASMA 2007: International conference on research and applications of plasmas; Greifswald (Germany); 16-19 Oct 2007; 4. German-Polish conference on plasma diagnostics for fusion and applications; Greifswald (Germany); 16-19 Oct 2007; 6. French-Polish seminar on thermal plasma in space and laboratory; Greifswald (Germany); 16-19 Oct 2007; (c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL