Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] Owing to their strong perpendicular magnetic anisotropy, FePd, CoPd, and their Co(Fe)Pt counterparts are candidate materials for ultrahigh density magnetic recording. The stability and magnetic properties of such films are largely dependent on the orientation and local distribution of the L10 FePd phase fraction. Therefore, the formation and transformation of the L10 phase in such thin films have been the subject of continued interest. Highly ordered epitaxial FePd(001) thin films (with an L10 phase fraction of 0.81) were prepared by molecular-beam epitaxy on a MgO(001) substrate. The effect of postgrown room temperature, 130 keV He+ irradiation was investigated at fluences up to 14.9x1015 ions/cm2. X-ray diffraction and conversion electron Moessbauer spectroscopy revealed that with increasing fluence, the L10 FePd phase decomposes into the face centered cubic phase with random Fe and Pd occupation of the sites. A partially ordered local environment exhibiting a large hyperfine magnetic field also develops. Upon He+ irradiation, the lattice parameter c of the FePd L10 structure increases and the long range order parameter S steeply decreases. The Fe-Fe nearest-neighbor coordination in the Fe-containing environments increases on average from Fe47Pd53 to Fe54Pd46, indicating a tendency of formation iron-rich clusters. The equilibrium parameters corresponding to the equiatomic L10 phase were found at different fluences by conversion electron Moessbauer spectroscopy and by x-ray diffraction a difference, from which a plane-perpendicular compressive stress and a corresponding in-plane tensile stress are conjectured. The steep increase in the interface roughness above 7.4x1015 ions/cm2 is interpreted as a percolation-type behavior related to the high diffusion anisotropy in the L10 phase
Primary Subject
Source
(c) 2008 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ANISOTROPY, COBALT ALLOYS, CRYSTAL GROWTH, ELECTRON SPECTRA, FCC LATTICES, HELIUM IONS, ION BEAMS, IRON ALLOYS, KEV RANGE 100-1000, LATTICE PARAMETERS, MAGNESIUM OXIDES, MAGNETIC PROPERTIES, MOESSBAUER EFFECT, MOLECULAR BEAM EPITAXY, ORDER PARAMETERS, PALLADIUM ALLOYS, PHASE TRANSFORMATIONS, TEMPERATURE RANGE 0273-0400 K, THIN FILMS, X-RAY DIFFRACTION
ALKALINE EARTH METAL COMPOUNDS, ALLOYS, BEAMS, CHALCOGENIDES, CHARGED PARTICLES, COHERENT SCATTERING, CRYSTAL GROWTH METHODS, CRYSTAL LATTICES, CRYSTAL STRUCTURE, CUBIC LATTICES, DIFFRACTION, DIMENSIONLESS NUMBERS, ENERGY RANGE, EPITAXY, FILMS, IONS, KEV RANGE, MAGNESIUM COMPOUNDS, OXIDES, OXYGEN COMPOUNDS, PHYSICAL PROPERTIES, PLATINUM METAL ALLOYS, SCATTERING, SPECTRA, TEMPERATURE RANGE, TRANSITION ELEMENT ALLOYS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL