Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
AbstractAbstract
[en] A 3D radial k-space acquisition technique with homogenous distribution of the sampling density (DA-3D-RAD) is presented. This technique enables short echo times (TE<0.5 ms), that are necessary for 23Na-MRI, and provides a high SNR-efficiency. The gradients of the DA-3D-RAD-sequence are designed such that the average sampling density in each spherical shell of k-space is constant. The DA-3D-RAD-sequence provides 34% more SNR than a conventional 3D radial sequence (3D-RAD) if T2*-decay is neglected. This SNR-gain is enhanced if T2*-decay is present, so a 1.5 to 1.8 fold higher SNR is measured in brain tissue with the DA-3D-RAD-sequence. Simulations and experimental measurements show that the DA-3D-RAD sequence yields a better resolution in the presence of T2*-decay and less image artefacts when B0-inhomogeneities exist. Using the developed sequence, T1-, T2*- and Inversion-Recovery-23Na-image contrasts were acquired for several organs and 23Na-relaxation times were measured (brain tissue: T1=29.0±0.3 ms; T2s*∼4 ms; T2l*∼31 ms; cerebrospinal fluid: T1=58.1±0.6 ms; T2*=55±3 ms (B0=3 T)). T1- und T2*-relaxation times of cerebrospinal fluid are independent of the selected magnetic field strength (B0 = 3T/7 T), whereas the relaxation times of brain tissue increase with field strength. Furthermore, 23Na-signals of oedemata were suppressed in patients and thus signals from different tissue compartments were selectively measured. (orig.)
Original Title
Natrium-Magnetresonanztomographie. Entwicklung einer 3D radialen Messtechnik mit optimierter k-Raum-Abtastdichte und hoher SNR-Effizienz
Primary Subject
Source
1 Apr 2009; 175 p; Diss.
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue