Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
Bath, Adrian; Hermansson, Hans-Peter
Swedish Radiation Safety Authority, Stockholm (Sweden)2009
Swedish Radiation Safety Authority, Stockholm (Sweden)2009
AbstractAbstract
[en] The present groundwater chemical conditions at the candidate sites for a spent nuclear fuel repository in Sweden (the Forsmark and Laxemar sites) and processes affecting its future evolution comprise essential conditions for the evaluation of barrier performance and long-term safety. This report reviews available chemical sampling information from the site investigations at the candidate sites, with a particular emphasis on redox active groundwater components and microbial populations that influence redox affecting components. Corrosion of copper canister material is the main barrier performance influence of redox conditions that is elaborated in the report. One section addresses native copper as a reasonable analogue for canister materials and another addresses the feasibility of methane hydrate ice accumulation during permafrost conditions. Such an accumulation could increase organic carbon availability in scenarios involving microbial sulphate reduction. The purpose of the project is to evaluate and describe the available knowledge and data for interpretation of geochemistry, microbiology and corrosion in safety assessment. A conclusive assessment of the sufficiency of information can, however, only be done in the future context of a full safety assessment. The authors conclude that SKB's data and models for chemical and microbial processes are adequate and reasonably coherent. The redox conditions in the repository horizon are predominantly established through the SO42-/HS- and Fe3+/Fe2+ redox couples. The former may exhibit a more significant buffering effect as suggested by measured Eh values, while the latter is associated with a lager capacity due to abundant Fe(II) minerals in the bedrock. Among a large numbers of groundwater features considered in geochemical equilibrium modelling, Eh, pH, temperature and concentration of dissolved sulphide comprise the most essential canister corrosion influences. Groundwater sulphide may originate from sulphide minerals and ongoing sulphate reduction as indicated by SRB populations, and may be limited by organic carbon availability. Another possible route for sulphate reduction is by coupling with anaerobic methane oxidation. However, during present day conditions methane levels at Forsmark and Laxemar are probably too low for any essential sulphide production by that route. Methane hydrate could accumulate in fractures and repository void spaces beneath permafrost, but the potential impacts would be minimised by low porosity in crystalline rocks down to and below repository depth
Primary Subject
Source
Aug 2009; 114 p; ISSN 2000-0456;
; PROJECT SSM 200810237 AND 200810238; Also available from: http://www.stralsakerhetsmyndigheten.se/In-English/Publ; 86 refs., 37 figs., 6 tabs.

Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue