Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
Streit-Bianchi, M.; Hendry, J.H.; Roberts, S.A.; Morris, J.D.; Durgaryan, A.A.
6. LOWRAD International Conference on Low dose radiation effects on human health and environment2007
6. LOWRAD International Conference on Low dose radiation effects on human health and environment2007
AbstractAbstract
[en] Complete text of publication follows. The exposure of germ cells to ionizing radiations is of concern both from high-dose therapeutic exposures and from low doses causing deleterious trans-generational mutations. P53 protein plays an important role in cellular damage and is expressed in the testis normally during meiosis, its expression being localised to the preleptotene and early/mid pachytene spermatocytes. P53 null mice, heterozygotes possessing a 129 Sv/C57BL6 genetic background and B6D2F1 mice have been irradiated to 1 and 2 Gy single doses. Fractionated exposures of 1+1 Gy at 4 hours interval were also carried out. Apoptosis induction, spermatogonia and spermatocytes survival were assessed by microscope analysis of histological samples at 4 to 96 hours after irradiation in time-course experiments. The same end-points were also assessed at 72 and 96 hours after irradiation to single doses in the region between 20cGy to 2Gy. A dose dependent level of p53 expression was observed at 4 hours after irradiation to 1 and 2 Gy which returned to normal level by 24 hours. Our data support a two process mode of apoptosis with a first wave around 12 hours followed by a second wave at 2-3 days. The first wave apoptosis is substantially reduced in p53 null mice whereas the second wave is reduced in B6D2F1 mice. The initial increase in apoptosis was delayed in some stages of the of germ cells development which were identified by the spermatids shape. Clear correlation exists between apoptosis and survival assessed in stage XI-XII Tubules 72 hours after irradiation. The data are in agreement with other data in literature indicating that irradiated spermatogonia die through apoptosis. The lack of apoptosis observed in p53 null mice results in a very high survival rate of daughter cells assessed later. Theses spermatocytes and the following progenitor cells are likely to carry mutations as most will not die in the smaller second wave of apoptosis observed 3 days after irradiation and may contribute to a greater mutational burden with respect to transgenerational effects. Split-dose data when compared to single dose also shows for p53 null mice a very high rate of spermatogonia survival. The strain +/+ indicates a large mortality rate when the second dose is given at the time mitotic radiation induced delay is highest whereas the strain +/- shows intermediate values. In the +/+ mice efficient apoptosis activity is shown by a first and second wave appearance whereas in p53 null mice only a second wave is clearly visible. These data seems to indicate that in +/+ mice repair mechanisms in spermatogonial cell are extremely low and that poor cellular damage proofreading exists in p53 null mice. The deficiencies in apoptosis related to the p53 status contribute to the high cancer-proneness of individual with p53 deficiency in the Li-Fraumeni syndrome.
Primary Subject
Source
International Journal of Low Radiation; WONUC; Hungarian Biophysical Society; [130 p.]; 2007; p. 120; 6. LOWRAD International Conference on Low dose radiation effects on human health and environment; Budapest (Hungary); 17-20 Oct 2007; Available from http://www.osski.hu/lowrad2007/LOWRAD2007_program_book.pdf
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue