Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.013 seconds
Johnson, Richard W.; Sato, Hiroyuki
Idaho National Laboratory (United States). Funding organisation: DOE - NE (United States)2010
Idaho National Laboratory (United States). Funding organisation: DOE - NE (United States)2010
AbstractAbstract
[en] Significant uncertainty exists about the effects of bypass flow in a prismatic gas-cooled very high temperature reactor (VHTR). Bypass flow is the flow in the gaps between prismatic graphite blocks in the core. The gaps are present because of variations in their construction, imperfect installation and expansion and shrinkage from thermal heating and neutron fluence. Calculations are performed using computational fluid dynamics (CFD) for flow of the helium coolant in the gap and coolant channels along with conjugate heat generation and heat transfer in the fuel compacts and graphite. A commercial CFD code is used for all of the computations. A one-twelfth sector of a standard hexagonal block column is used for the CFD model because of its symmetry. Various scenarios are computed by varying the gap width from zero to 5 mm, varying the total heat generation rate to examine average and peak radial generation rates and variation of the graphite block geometry to account for the effects of shrinkage caused by irradiation. The calculations are for a 350 MWth prismatic reactor. It is shown that the effect of increasing gap width, while maintaining the same total mass flow rate, causes increased maximum fuel temperature while providing significant cooling to the near-gap region. The maximum outlet coolant temperature variation is increased by the presence of gap flow and also by an increase in total heat generation with a gap present. The effect of block shrinkage is actually to decrease maximum fuel temperature compared to a similar reference case.
Primary Subject
Source
1 Oct 2010; vp; HTR 2010: 5. International Conference on High Temperature Reactor Technology; Prague (Czech Republic); 18-20 Oct 2010; AC07-05ID14517; Available from http://www.inl.gov/technicalpublications/Documents/4654904.pdf; PURL: https://www.osti.gov/servlets/purl/991899-pqRW0t/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue