Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
Collins, Michael L.; Havrilla, George J.
Los Alamos National Laboratory (United States). Funding organisation: US Department of Energy (United States)2009
Los Alamos National Laboratory (United States). Funding organisation: US Department of Energy (United States)2009
AbstractAbstract
[en] Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.
Primary Subject
Source
1 Jan 2009; 11 p; 50. Annual Meeting of the Institute of Nuclear Materials Management (INMM); Tucson, AZ (United States); 12-16 Jul 2009; LA-UR--09-4391; AC52-06NA25396; Available from http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-09-04391; PURL: https://www.osti.gov/servlets/purl/990778-mRmEOw/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue