Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] It is well known that magnons, which are elementary excitations in a magnetic material, behave as bosons when their density is low. We study how the bosonic character of magnons is governed by the amount of multipartite entanglement in the vacuum state on which magnons are excited. We show that if multipartite entanglement is strong, magnons cease to be bosons. We also consider some examples, such as ground states of the Heisenberg ferromagnet and the transverse Ising model, the condensation of magnons, the one-way quantum computer, and Kitaev's toric code. Our result provides insights into the quantum statistics of elementary excitations in these models, and into the reason why a nonlocal transformation, such as the Jordan-Wigner transformation, is necessary for some many-body systems.
Primary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue