Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] QCD with two flavors of massless color-sextet quarks is considered as a model for conformal/walking technicolor. If this theory possesses an infrared fixed point, as indicated by 2-loop perturbation theory, it is a conformal (unparticle) field theory. If, on the other hand, a chiral condensate forms on the weak-coupling side of this would-be fixed point, the theory remains confining. The only difference between such a theory and regular QCD is that there is a range of momentum scales over which the coupling constant runs very slowly (walks). In this first analysis, we simulate the lattice version of QCD with two flavors of staggered quarks at finite temperatures on lattices of temporal extent Nt=4 and 6. The deconfinement and chiral-symmetry restoration couplings give us a measure of the scales associated with confinement and chiral-symmetry breaking. We find that, in contrast to what is seen with fundamental quarks, these transition couplings are very different. β=6/g2 for each of these transitions increases significantly from Nt=4 and Nt=6 as expected for the finite-temperature transitions of an asymptotically free theory. This suggests a walking rather than a conformal behavior, in contrast to what is observed with Wilson quarks. In contrast to what is found for fundamental quarks, the deconfined phase exhibits states in which the Polyakov loop is oriented in the directions of all three cube roots of unity. At very weak coupling the states with complex Polyakov loops undergo a transition to a state with a real, negative Polyakov loop.
Primary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Physical Review. D, Particles Fields; ISSN 0556-2821;
; CODEN PRVDAQ; v. 81(11); p. 114507-114507.11

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue