Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] We investigate the localized nonlinear matter waves of the quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity in the harmonic potential. It is shown that all of the Bose-Einstein condensates, similar to the linear harmonic oscillator, can have an arbitrary number of localized nonlinear matter waves with discrete energies, which are mathematically exact orthogonal solutions of the Gross-Pitaevskii equation. Their properties are determined by the principal quantum number n and secondary quantum number l: the parity of the matter wave functions and the corresponding energy levels depend only on n, and the numbers of density packets for each quantum state depend on both n and l, which describe the topological properties of the atom packets. We also give an experimental protocol to observe these phenomena in future experiments.
Primary Subject
Secondary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue