Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] Results of calculations of the integrated cross section and the energy distribution for ionization of ground-state hydrogen by 1S-wave electron impact are presented. The breakup amplitude is expressed as a volume integral that contains an approximate final-state wave function which accounts for postcollision dynamic screening. The error in this wave function is accounted for by the response function, which is represented on a real discrete (Sturmian) basis, with its physical branch specified by the arrow of time. It is found that the energy distribution is primarily convex for impact energies from about 2 to 10 eV above threshold, and primarily flat from about 10 to 20 eV above threshold. The shape of the energy distribution appears to reflect both the competition between escape and recapture, and the substantial postcollision exchange of energy between the electrons. A rough, nonclassical criterion for predicting the curvature of the energy distribution is derived.
Primary Subject
Secondary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue