Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] Femtosecond time-resolved velocity map imaging combined with multiphoton ionization was applied to study the optical field modulation of NO Rydberg-state populations. The A 2Σ+(υ=2) state is populated by absorption of one 271-nm photon. Two peaks in the photoelectron kinetic energy spectra, centered at 0.82 and 2.35 eV, are caused by ionization from the A 2Σ+(υ=2) state by time-delayed one-color and two-color multiphoton ionization, respectively. In the overlap region of the pump and probe light, the C 2Π(υ=4) state is populated by a 1+1' excitation. When the pump laser intensity is increased, other Rydberg states (E 2Σ+, F 2Δ, and D 2Σ+) are moved into resonance by a laser-induced Stark shift. These states can be populated only within the temporal overlap region of the pump and probe light. When the intensity of the pump laser is higher than 2.9 x 1012 W/cm2, Rydberg-valence coupling between the A 2Σ+(υ=2) and B 2Π(υ=4) states may play a key role, resulting in photoelectrons with kinetic energy of 0.37 eV. The coupling strength increases with increasing pump laser intensity.
Primary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
BOSONS, CHALCOGENIDES, ELECTROMAGNETIC RADIATION, ELEMENTARY PARTICLES, ENERGY, ENERGY LEVELS, ENERGY RANGE, EQUIPMENT, EXCITED STATES, IONIZATION, MASSLESS PARTICLES, NITROGEN COMPOUNDS, NITROGEN OXIDES, OPTICAL PROPERTIES, ORGANOLEPTIC PROPERTIES, OXIDES, OXYGEN COMPOUNDS, PHYSICAL PROPERTIES, RADIATIONS, RESOLUTION, SORPTION, TIMING PROPERTIES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue