Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.025 seconds
AbstractAbstract
[en] We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.
Primary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue