Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.025 seconds
AbstractAbstract
[en] We study the effects of fermiophobic scalar/pseudoscalar oblique corrections on bound state energy levels in muonic atoms. To make the treatment sufficiently general, while including ordinary scalar and axionlike pseudoscalar fields as special cases, we consider unparticle scalar/pseudoscalar operators with couplings predominantly to photons. We derive the relevant vacuum polarization functions and comment on the functional forms of the unparticle Uehling potentials for various scaling dimensions in the point nucleus and finite nucleus approximations. It is estimated that for an infrared fixed point near the scale of electroweak-symmetry breaking, in the low TeV range, and natural values for the model parameters, the energy shifts in the low-lying muonic-lead transitions are typically of the order of a few times 0.1 eV to a few times 0.01 eV. The energy level structures of the unparticle Uehling shifts are inferred using general methods for the scalar and pseudoscalar cases and it is shown that the two cases contribute to the energy shifts with the same sign. It is shown that this conclusion is not changed even when scale invariance is broken and is in fact relatively insensitive to the scale at which it is broken. It is pointed out nevertheless that the estimated magnitude of the unparticle Uehling shift (based on some natural values for the model parameters) is a factor of 1000-10000 below the discrepancy in QED/nuclear theory and precision muonic-lead spectroscopy from about two decades ago. We briefly comment on scenarios where the unparticle induced energy shift, if it exists, may be experimentally measurable. One possibility in this direction is if the UV sector, from which the unparticle sector arises, has a large number of fermions. Comments are also made on the possibility of further studying muonic atoms, as a probe for beyond-standard-model physics, in the context of forthcoming experiments, such as those probing lepton flavor violation through coherent muon-electron conversions. For completeness we explore some of the astrophysical and cosmological consequences of a fermiophobic scalar/pseudoscalar unparticle sector. In the fermiophobic context we also estimate a minimum value for the conformal invariance breaking scale.
Primary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ATOMS, BOSONS, CALCULATION METHODS, COMPOSITE MODELS, ELECTRODYNAMICS, ELEMENTARY PARTICLES, ENERGY RANGE, FERMIONS, FIELD THEORIES, GRAND UNIFIED THEORY, INVARIANCE PRINCIPLES, LEPTONS, MASSLESS PARTICLES, MATHEMATICAL MODELS, PARTICLE MODELS, PHYSICS, QUANTUM FIELD THEORY, QUARK MODEL, UNIFIED GAUGE MODELS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue