Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] We establish the set of independent variables suitable to monitor the complicated evolution of the spinning compact binary during the inspiral. Our approach is valid up to the second post-Newtonian order, including leading order spin-orbit, spin-spin and mass quadrupole-mass monopole effects, for generic (noncircular, nonspherical) orbits. Then, we analyze the conservative spin dynamics in terms of these variables. We prove that the only binary black hole configuration allowing for spin precessions with equal angular velocities about a common instantaneous axis roughly aligned to the normal of the osculating orbit, is the equal mass and parallel (aligned or antialigned) spin configuration. This analytic result puts limitations on what particular configurations can be selected in numerical investigations of compact binary evolutions, even in those including only the last orbits of the inspiral.
Primary Subject
Secondary Subject
Source
(c) 2010 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue