Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
AbstractAbstract
[en] Practical and economical constraints prompt the need of obtaining lithological and structural information for development of desert areas with reduced field effort. The fusion of multi-sensor satellite data is an effective mean of exploiting the complimentary nature of different data types. This technique allows fusion of spectral-spectral information of multi-source data with high accuracy. In the present study, fusion of SPOT and ASTER data was applied to test the potentiality of this technique in mapping geological formations and structural lineaments in Wadi Ghoweiba area, to the west of the northwestern tip of the Gulf of Suez, Egypt. ASTER data is characterized by a wide range of spectral bands (14 bands), while SPOT panchromatic data is characterized by high (10 meters) spatial resolution. Based on spectral characteristic analysis (SCA) of the 3 VNIR and the 6 SWIR bands of ASTER data, two false-color band-ratio images (1/3, 2/5, and 4/ 9) and (1/5, 8/9, and 4/6) in R, G, B were produced for better lithological discrimination. SPOT panchromatic image data was fused with ASTER band ratio images data using principal component (PC) and color normalization or Brovey transformation techniques. The fused images proved to be excellent for lithological discrimination. ASTER data includes bands 3N (Nadir) and 3B (Backward) that are acquired in the spectral range of near infrared region (from 0.78 to 0.86 microns) allowing extraction of digital elevation model (DEM). Three-dimensional perspective views were generated by draping SPOT-ASTER ratio fused images over ASTER DEM. This technique was used to enhance morphologically-defined structures. The fused images and the 3D perspective views were interpreted to produce a photo geological-structural map that was verified using the available geological maps and subsequent field check. The produced photo geological map indicates that fusion of SPOT and ASTER ratio image's data is a reliable technique for geological mapping especially in remote and inaccessible areas
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Egyptian Journal of Remote Sensing and Space Sciences; ISSN 1110-9823;
; v. 12(2009); p. 101-126

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue