Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] We measured the electrical resistivity under pressure and magnetic field for a heavy fermion compound YbIr2Zn20 with a cubic cage structure. Metamagnetic transition, which is characteristic in the heavy fermion compounds, occurs at the magnetic field Hm=97 kOe for H parallel <100> at ambient pressure, shifts to lower magnetic fields with increasing pressure P, and becomes zero at the critical pressure Pc≅5.2 GPa. From this experiment, we noted that the metamagnetic transition field Hm is a good tuning parameter to approach the quantum critical point. Correspondingly, the A value of the electrical resistivity ρ=ρ0 + AT2 in the Fermi liquid relation under magnetic field indicates a peak structure at Hm and increases extremely in magnitude from A=0.29 μΩ·cm/K2 at ambient pressure to 380 μΩ·cm/K2 at 5.0 GPa under 0 kOe. The present large A value at 5.0 GPa is, however, strongly reduced in magnetic field: 1.45 μΩ·cm/K2 at 80 kOe. It is also noted that the residual resistivity is enhanced at 5.0 and 5.5 GPa, but the enhanced resistivity is strongly reduced in magnetic fields. These results indicate that electronic instability is realized at around Pc≅5.2 GPa. (author)
Source
Available from http://dx.doi.org/10.1143/JPSJ.79.083709; 12 refs., 6 figs.
Record Type
Journal Article
Journal
Journal of the Physical Society of Japan; ISSN 0031-9015;
; v. 79(8); p. 083709.1-083709.4

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL