Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.02 seconds
AbstractAbstract
[en] The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (1012 W/cm2) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 1019 W/cm2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat Darmstadt initiated the development of a test stand to transport, focus and bunch rotate these beams by conventional ion optics and RF technology. The field strength of 7.5 T enabled collimation of protons with an energy of >10 MeV for the first time. In addition, the focusing capability of the solenoid provided a flux increase in the focal spot of about a factor of 174 at a distance of 40 cm from the source, compared to a beam without using the magnetic field. For a quantitative analysis of the experiment numerical simulations with the WarpRZ code were performed. The code, which was originally developed to study high current ion beams and aid in the pursuit of heavy-ion driven inertial confinement fusion, was modified to enable the use of laser-accelerated proton beams as particle source. The calculated energy-resolved beam parameters of RIS could be included, and the plasma simulation criteria were studied in detail. The geometrical boundaries of the experimental setup were used in the simulations. 2.99 x 109 collimated protons in the energy range of 13.5±1 MeV could be transported over a distance of 40 cm. In addition, 8.42 x 109 protons in the energy range of 6.7±0.2 MeV were focused into a spot of <2 mm in diameter. The transmission through the solenoid for both cases was about 18%. (orig.)
Primary Subject
Source
15 Nov 2010; 139 p; Diss. (Dr.rer.nat.)
Record Type
Miscellaneous
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue