Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.041 seconds
Kallio, U.; Nyberg, S.; Koivula, H.; Jokela, J.; Poutanen, M.
Posiva Oy, Helsinki (Finland)2011
Posiva Oy, Helsinki (Finland)2011
AbstractAbstract
[en] The Finnish Geodetic Institute (FGI) has studied crustal deformations in co-operation with the Posiva Oy since 1994, when a network of ten pillars for GPS observations was established at Olkiluoto. In 2010 the local GPS network at Olkiluoto consisted of 14 concrete pillars. The whole network has been measured twice a year in the static GPS campaigns with 24 h sessions. The four new pillars were established in 2010 and the permanent measurements on them will start in 2011. The network of seven GPS pillars was built at Kivetty and Romuvaara during the year 1996. One pillar in each investigation area belongs to the Finnish permanent GPS network, FinnRef. A total of 28 GPS measurement campaigns have been carried out at Olkiluoto since 1995, and 18 campaigns at Kivetty and Romuvaara. At Olkiluoto a baseline for electronic distance measurements (EDM) was built in 2002. The baseline has been measured in connection to the GPS observations using the EDM instrument Kern ME5000 Mekometer. The GPS operations in 2010 included the two GPS campaigns at Olkiluoto, GPS campaigns at Kivetty and Romuvaara, EDM baseline measurements at Olkiluoto, and the control marker measurements with the tachymeter at Olkiluoto. All GPS data history was reprocessed with Bernese GPS software using the new processing strategy tested in 2009. The results were analysed by computing the change rates of the baselines and estimating horizontal velocities for the pillars using the barycenter of the velocities as a reference. In the Olkiluoto inner network 80 percent of the change rates were smaller than 0.10 mm/a. Roughly one fourth of the change rates could be considered as statistically significant (change rate larger than 3 σ. The statistically significant change rates were mainly related to the Olkiluoto permanent station (GPS1) and to the pillar GPS5, which had also the maximum change rate (0.21 ± 0.03 mm/a). In Olkiluoto outer network the maximum and statistically significant change rates are larger compared to the inner network (max 0.42 ± 0.07 mm/a for GPS1-GPS11) but more uncertain due to shorter time series. At Kivetty one third of the change rates could be considered as statistically significant, and the maximum change rate was 0.18 ± 0.03 mm/a for GPS3-GPS4. The horizontal velocities were of the same order of magnitude as in the Olkiluoto network. At Romuvaara the change rates were of the same order of magnitude than in Kivetty and Olkiluoto (less than 0.2 mm/a), but none of the change rates were statistically significant. After four control marker measurement campaigns we can estimate the reproducibility of our angle and distance measurements in micro networks. The standard deviations of horizontal angles, height differences and distances in our micro networks were 0.0028 gon, 0.0007 m and 0.0005 m respectively. As a conclusion of the control measurements we cannot say anything about possible deformations of the pillars - the precision of our observations is not sufficient for the purpose, but we can ensure that any bigger damages have not happened at any pillar. According to the nine years long time series of EDM measurements GPS gives us on the average 1.3 mm longer distances between pillars GPS7 and GPS8 than EDM. The reason for the difference is unmodelled or dismodelled offsets in GPS observations and the scale difference between GPS and EDM. The trends of EDM and GPS distance time series are similar. FGI will continue geodetic observations at Olkiluoto, Kivetty and Romuvaara. The Olkiluoto network is under major modernization for permanent tracking during upcoming years. We aim to start the permanent tracking in four new stations and four old stations in autumn 2011. (orig.)
Primary Subject
Secondary Subject
Source
Nov 2011; 64 p; Also available in fulltext at www.posiva.fi or as a soft back edition from Posiva; 30 refs.
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue