Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.015 seconds
AbstractAbstract
[en] The smoothed experimental dynamical moment of inertia J(2) values were fitted with a theoretical version depend on Harris three parameter formula in even power of angular frequency ω, derived for results from cranking model. The expansion parameters were adjusted by using a computer simulated search program. The best expansion parameters from the fit were used to assign the spins of the superdeformed ( SD ) rotational bands (RB ) by integrating the calculated J(2) . The data set include 23 RB's in 11 SD nuclei, which show no evidence of either irregular behavior near the bottom of the bands or abrupt angular momentum at low rotational frequency in the mass region ranging from A= 142 to A = 154. we used the differences of angular momenta at constant frequency as effective alignment. The relative properties of superdeformed rotational bands (SDRB's) are analyzed in terms of the effective alignment of the valence nucleons. The effective alignment is a powerful tool to assign the configurations, to select the identical bands as well as to predict new SD bands from other combination of the orbitals. The ΔI = 2 energy staggering observed in 3 of our selected SDRB's are also described from a smooth reference representing the finite difference approximation to the fourth derivative of the γ-ray transition energies.
Primary Subject
Source
Egyptian Society of Radiation Sciences and Applications (ESRSA) (Egypt); 920 p; Nov 2012; p. 908-920; ESRSA,12: 3. Conference on Radiation Sciences and Applications; Hurghada (Egypt); 12-16 Nov 2012
Record Type
Miscellaneous
Literature Type
Conference; Numerical Data
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue