Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.031 seconds
AbstractAbstract
[en] When an ultra intense femtosecond laser (I > 1016 W.cm-2) with high contrast is focused on a solid target, the laser field at focus is high enough to completely ionize the target surface during the rising edge of the laser pulse and form a plasma. This plasma is so dense (the electron density is of the order of hundred times the critical density) that it completely reflects the incident laser beam in the specular direction: this is the so-called 'plasma mirror'. When laser intensity becomes very high, the non-linear response of the plasma mirror to the laser field periodically deforms the incident electric field leading to high harmonic generation in the reflected beam. In the temporal domain this harmonic spectrum is associated to a train of atto-second pulses. The goals of my work were to get a better comprehension of the properties of harmonic beams produced on plasma mirrors and design new methods to control theses properties, notably in order to produce isolated atto-second pulses instead of trains. Initially, we imagined and modeled the first realistic technique to generate isolated atto-second on plasma mirrors. This brand new approach is based on a totally new physical effect: 'the atto-second lighthouse effect'. Its principle consists in sending the atto-second pulses of the train in different directions and selects one of these pulses by putting a slit in the far field. Despite its simplicity, this technique is very general and applies to any high harmonic generation mechanism. Moreover, the atto-second lighthouse effect has many other applications (e.g in metrology). In particular, it paves the way to atto-second pump-probe experiments. Then, we studied the spatial properties of these harmonics, whose control and characterization are crucial if one wants to use this source in future application experiments. For instance, we need to control very precisely the harmonic beam divergence in order to achieve the atto-second lighthouse effect and get isolated atto-second pulses. At very high intensities, the plasma mirror dents and gets curved by the inhomogeneous radiation pressure of the laser field at focus. The plasma mirror surface thus acts as a curved surface, which focuses the harmonic beam in front of the target and fixes its spatial properties. We developed a fully analytical and predictive model for the surface deformation, thanks to which we are now able to calculate very easily the spatial properties of the generated harmonic beams. we validated this model through hundreds of 1D and 2D PIC simulations. (author)
Original Title
Generation d'impulsions attosecondes sur miroir plasma relativiste
Primary Subject
Source
Dec 2012; 223 p; 74 refs.; Available from the INIS Liaison Officer for France, see the 'INIS contacts' section of the INIS website for current contact and E-mail addresses: http://www.iaea.org/INIS/contacts/; These Physique
Record Type
Report
Literature Type
Thesis/Dissertation
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL