Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] Radioactive waste is usually sealed in steel canisters surrounded by a layer of compacted clay back-fill, and permanent buried in a deep geological repository. Unavoidably, the radionuclide contaminants can be released from repository and then sorbed onto the waste container corrosion products or the Fe-rich minerals. Herein, we characterized the Fe(III)-saturated montmorillonite (Fe(III)-MMT) by using Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET), and found the changes of the surface incorporating Fe(III) and surface micropores. The sorption of U(VI) on Fe(III)-MMT and Na-montmorillonite (Na-MMT) was investigated by batch experiments. The larger surface area and cation exchange capacity, and the existence of Fe(III) (hydr)oxide phases in Fe(III)-MMT contributed greatly to its sorption capacity. In the whole pH range, the sorption of U(VI) on Fe(III)-MMT was higher than on Na-MMT, and the sorption was strongly depended on pH and ionic strength. The sorption isotherms were simulated well by the Langmuir and Freundlich models. The thermodynamic parameters (ΔH, ΔS and ΔG) calculated from the temperature dependent sorption isotherms indicated that the sorption of U(VI) on Fe(III)-MMT was an endothermic and spontaneous process. The observations suggest that the interactions between U(VI) and Fe(III)-MMT are important in controlling U(VI) retention. The phenomena need to be considered in risk assessment and reactive transport modeling.
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
ADSORPTION ISOTHERMS, CONCENTRATION RATIO, CONTAINERS, CONTAMINATION, CORROSION, CORROSION PRODUCTS, INFRARED SPECTRA, ION EXCHANGE, MONTMORILLONITE, PH VALUE, RADIOACTIVE WASTE DISPOSAL, RADIOACTIVE WASTE FACILITIES, RETENTION, SCANNING ELECTRON MICROSCOPY, SURFACE AREA, TEMPERATURE DEPENDENCE, THERMODYNAMIC PROPERTIES, UNDERGROUND DISPOSAL, UNDERGROUND FACILITIES, URANIUM IONS, VALENCE, X-RAY DIFFRACTION
CHARGED PARTICLES, CHEMICAL REACTIONS, CLAYS, COHERENT SCATTERING, DIFFRACTION, DIMENSIONLESS NUMBERS, ELECTRON MICROSCOPY, INORGANIC ION EXCHANGERS, ION EXCHANGE MATERIALS, IONS, ISOTHERMS, MANAGEMENT, MATERIALS, MICROSCOPY, MINERALS, NUCLEAR FACILITIES, PHYSICAL PROPERTIES, RADIOACTIVE WASTE MANAGEMENT, SCATTERING, SILICATE MINERALS, SPECTRA, SURFACE PROPERTIES, WASTE DISPOSAL, WASTE MANAGEMENT
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue