Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Sun, L; Subasic, E; Jakumeit, J, E-mail: akumeit@access.rwth-aachen.de2015
AbstractAbstract
[en] Mold-filling capability is an important property of casting materials. Especially in thin-walled die casting, fast cooling of the melt by contact to the die makes complete filling difficult to ensure. Simulation is an important tool enabling investigation of filling problems, even before the die is manufactured. However, the prediction of misruns is challenging. Flow and solidification have to be computed as closely coupled. The effects of surface tension, the wetting angle and reduced melt flow due to solidification must be modeled with high precision. To meet these requirements, a finite-volume method using arbitrary polyhedral control volumes is used to solve flow and solidification as closely coupled. The Volume-of-Fluid approach is used to capture the phase separation between gas, melt and solid in connection with a High-Resolution Interface-Capturing scheme to obtain sharp interfaces between phases. To model the resistance of the dendrite network to the melt flow, an additional source term in the momentum equation was implemented. The Bolt test was performed for A356 alloys at a range of different casting temperatures. Numerical prediction of incomplete filling in the bottleneck regions agreed well with experimental findings using 3D camera scanning. The simulation enables derivation of the dependence of critical wall-thickness, i.e. the thickness which is fillable, on casting temperature and metallostatic pressure. This could prove useful in predicting filling problems ahead of casting. (paper)
Primary Subject
Source
MCWASP XIV: 14. international conference on modelling of casting, welding and advanced solidification processes; Awaji island, Hyogo (Japan); 21-26 Jun 2015; Available from http://dx.doi.org/10.1088/1757-899X/84/1/012091; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
IOP Conference Series. Materials Science and Engineering (Online); ISSN 1757-899X;
; v. 84(1); [8 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue