Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.024 seconds
Murray, Alice M.; Wilmarth, William; Marra, John E.
American Society of Mechanical Engineers - ASME, Nuclear Engineering Division, Environmental Engineering Division, Two Park Avenue, New York, NY 10016-5990 (United States)2013
American Society of Mechanical Engineers - ASME, Nuclear Engineering Division, Environmental Engineering Division, Two Park Avenue, New York, NY 10016-5990 (United States)2013
AbstractAbstract
[en] The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)
Primary Subject
Source
2013; 5 p; ASME; New York, NY (United States); ICEM2013 - ASME 2013: 15. International Conference on Environmental Remediation and Radioactive Waste Management; Brussels (Belgium); 8-12 Sep 2013; ISBN 978-0-7918-5601-7;
; ISBN 978-0-7918-5602-4;
; Available from doi: http://dx.doi.org/10.1115/ICEM2013-96257; Country of input: France; 5 refs


Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL