Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.
Source
79. Annual meeting of the DPG and DPG Spring meeting of the condensed matter section (SKM) together with the divisions history of physics, gravitation and relativity (toghether with the Astronomische Gesellschaft e.V.), microprobes, theoretical and mathematical physics and working groups energy, equal opportunities, information, philosophy of physics, physics and disarmament, young DPG; Berlin (Germany); 15-20 Mar 2015; Available from http://www.dpg-verhandlungen.de; Session: TT 99.9 Do 17:15; No further information available; Also available as printed version: Verhandlungen der Deutschen Physikalischen Gesellschaft v. 50(3)
Record Type
Journal Article
Literature Type
Conference
Journal
Verhandlungen der Deutschen Physikalischen Gesellschaft; ISSN 0420-0195;
; CODEN VDPEAZ; (Berlin 2015 issue); [1 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL