Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] The experimental realization and control of quantum systems isolated from the environment, in ultracold atomic gases relaunched the interest in the fundamental non-equilibrium problem of how a finite system approaches thermal equilibrium. Despite intensive research there is still no conclusive answer to this question. We investigate theoretically how a quenched Bose-Josephson junction, where the Josephson coupling is switched on instantaneously, approaches its stationary state. We use the field theoretical approach for bosons out of equilibrium in a trap with discrete levels, developed by us previously. In this approach the operators for Bose-Einstein condensate (BEC) particles are treated on mean-field level, while excitations of the Bose gas in higher trap levels are treated fully quantum-mechanically. This leads to coupled equations of motion for the BEC amplitudes (Gross-Pitaevskii equation) and the quasiparticle propagators. The inelastic quasiparticle collisions responsible for the system relaxation during the time-dependent evolution are described within self-consistent second-order approximation.
Primary Subject
Source
79. Annual meeting of the DPG and DPG Spring meeting of the condensed matter section (SKM) together with the divisions history of physics, gravitation and relativity (toghether with the Astronomische Gesellschaft e.V.), microprobes, theoretical and mathematical physics and working groups energy, equal opportunities, information, philosophy of physics, physics and disarmament, young DPG; Berlin (Germany); 15-20 Mar 2015; Available from http://www.dpg-verhandlungen.de; Session: TT 69.4 Mi 15:45; No further information available; Also available as printed version: Verhandlungen der Deutschen Physikalischen Gesellschaft v. 50(3)
Record Type
Journal Article
Literature Type
Conference
Journal
Verhandlungen der Deutschen Physikalischen Gesellschaft; ISSN 0420-0195;
; CODEN VDPEAZ; (Berlin 2015 issue); [1 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL