Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; Sousa L, M. A.
Sociedad Mexicana de Irradiacion y Dosimetria, Ciudad de Mexico (Mexico). Funding organisation: Mesoamerican Centre for Theoretical Physics (Mexico); Universidad Autonoma Metropolitana (Mexico); Sociedad Mexicana de Irradiacion y Dosimetria (Mexico); Universidad Autonoma de Chiapas (Mexico); Consejo Nacional de Ciencia y Tecnologia (Mexico)2016
Sociedad Mexicana de Irradiacion y Dosimetria, Ciudad de Mexico (Mexico). Funding organisation: Mesoamerican Centre for Theoretical Physics (Mexico); Universidad Autonoma Metropolitana (Mexico); Sociedad Mexicana de Irradiacion y Dosimetria (Mexico); Universidad Autonoma de Chiapas (Mexico); Consejo Nacional de Ciencia y Tecnologia (Mexico)2016
AbstractAbstract
[en] The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)
Original Title
Herramienta en software para resolucion de problemas inversos mediante tecnicas de inteligencia artificial: una aplicacion en espectrometria neutronica
Primary Subject
Source
Oct 2016; 13 p; Sociedad Mexicana de Irradiacion y Dosimetria; Ciudad de Mexico (Mexico); 16. International Symposium on Solid State Dosimetry; 16. Simposio Internacional de Dosimetria de Estado Solido; Tuxtla Gutierrez, Chiapas (Mexico); 24-28 Sep 2016
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue