Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.02 seconds
AbstractAbstract
[en] Highlights: • The performance of an integrated nano-fluid based solar Rankine cycle is studied. • The effect of solar intensity, ambient temperature, and volume fraction is evaluated. • The concept of Finite Time Thermodynamics is applied. • It is shown that CuO/oil nano-fluid has the best performance from exergy perspective. - Abstract: In this paper, the performance of an integrated Rankine power cycle with parabolic trough solar system and a thermal storage system is simulated based on four different nano-fluids in the solar collector system, namely CuO, SiO_2, TiO_2 and Al_2O_3. The effects of solar intensity, dead state temperature, and volume fraction of different nano-particles on the performance of the integrated cycle are studied using second law of thermodynamics. Also, the genetic algorithm is applied to optimize the net output power of the solar Rankine cycle. The solar thermal energy is stored in a two-tank system to improve the overall performance of the system when sunlight is not available. The concept of Finite Time Thermodynamics is applied for analyzing the performance of the solar collector and thermal energy storage system. This study reveals that by increasing the volume fraction of nano-particles, the exergy efficiency of the system increases. At higher dead state temperatures, the overall exergy efficiency is increased, and higher solar irradiation leads to considerable increase of the output power of the system. It is shown that among the selected nano-fluids, CuO/oil has the best performance from exergy perspective.
Primary Subject
Source
S0196-8904(16)30397-1; Available from http://dx.doi.org/10.1016/j.enconman.2016.05.029; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ALUMINIUM COMPOUNDS, CHALCOGENIDES, CONCENTRATING COLLECTORS, CONTAINERS, COPPER COMPOUNDS, ENERGY, ENERGY SOURCES, ENERGY STORAGE, ENERGY SYSTEMS, EQUIPMENT, ORGANIC COMPOUNDS, OTHER ORGANIC COMPOUNDS, OXIDES, OXYGEN COMPOUNDS, PARABOLIC COLLECTORS, RENEWABLE ENERGY SOURCES, SILICON COMPOUNDS, SIMULATION, SOLAR COLLECTORS, SOLAR EQUIPMENT, STORAGE, THERMODYNAMIC CYCLES, TITANIUM COMPOUNDS, TRANSITION ELEMENT COMPOUNDS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue