Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.031 seconds
Chen, Jie; Zuo, Lei; Wu, Yongjia; Klein, Jackson, E-mail: leizuo@vt.edu2016
AbstractAbstract
[en] Highlights: • A novel design of on-pipe thermoelectric generator using heat pipe. • A heat pipe is used and increases power output by more than 6 times. • Detailed system level modeling on the heat transfer and energy conversion. • Lab-based experiments shows that system can harvest more than 2 W of energy. • An optimization towards the design indicates further improvement can be achieved. - Abstract: A thermoelectric energy harvester composed of two thermoelectric modules, a wicked copper-water heat pipe, and finned heat sinks has been designed, modeled, and tested. The harvester is proposed to power sensor nodes on heating/cooling, steam, or exhaust pipes like these in power stations, chemical plants and vehicle systems. A model to analyze the heat transfer and thermoelectric performance of the energy harvesting system has been developed and validated against experiments. The results show that the model predicts the system power output and temperature response with reasonable accuracy. The model developed in this paper can be adapted for use with general heat sink, heat pipe, and thermoelectric systems. The design, incorporating a heat pipe and two 1.1″ by 1.1″ Bi_2Te_3 modules generates 2.25 W ± 0.13 W power output with a temperature difference of 128 °C ± 1.12 °C and source temperature of 246 °C ± 1.9 °C, which is more than enough to operate wireless sensors or some actuators. The use of a heat pipe in this design increased the power output by 6 times over conventional designs. Based on the model, further improvement of the power output and energy harvesting efficiency of the system has been suggested by optimizing the number of thermoelectric modules.
Primary Subject
Secondary Subject
Source
S0196-8904(16)30473-3; Available from http://dx.doi.org/10.1016/j.enconman.2016.05.087; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue