Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.03 seconds
AbstractAbstract
[en] The present work provides an investigation of the oxy-fuel combustion of syngas (mixture of CO and H_2) inside an OTR (oxygen transport reactor) of tubular shape and surrounded by air in an annulus. The syngas is generated from solar thermal reforming of methane. CFD (Computational fluid dynamics) calculations were performed using FLUENT 14.0 commercial code, where a series of UDFs (user defined functions) that enable the transfer of oxygen across the membrane were written in VC++, then compiled and hooked to FLUENT software. The models of oxygen permeation and reaction kinetics are validated against the available experimental data under similar oxy-combustion conditions. Simulations were performed considering non-reactive and reactive flow conditions. The results showed that the reactive flow results in increase in oxygen permeation flux of about four times the case of non-reactive flow. Oxy-combustion characteristics of synthetic gas in a medium of recirculated CO_2 are investigated. Considering reactive flow conditions, the effects of inlet temperature, CO_2 circulation, fuel composition and sweep gas flux on oxygen permeation and combustion temperature are studied. It was found that increase in inlet temperature, inlet fuel concentration, inlet hydrogen concentration and sweep flow rate result in high combustion temperature and improved oxygen permeation flux. - Highlights: • Oxy-combustion of syngas inside a tubular-shaped oxygen transport reactor. • Validations of oxygen permeation and syngas oxy-combustion reaction kinetics models. • UDFs written in C++ are compiled to the software for oxygen transport across the ITM. • Simulations were performed considering non-reactive and reactive flow conditions. • Effects of temperature, CO_2 circulation, fuel composition and sweep flux are studied.
Primary Subject
Source
S0360-5442(15)01685-0; Available from http://dx.doi.org/10.1016/j.energy.2015.12.043; Copyright (c) 2015 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ALKANES, CARBON COMPOUNDS, CARBON OXIDES, CHALCOGENIDES, CHEMICAL REACTIONS, DIMENSIONLESS NUMBERS, ELEMENTS, HYDROCARBONS, KINETICS, MANAGEMENT, MECHANICS, NONMETALS, ORGANIC COMPOUNDS, OXIDATION, OXIDES, OXYGEN COMPOUNDS, PROCESSING, REACTION KINETICS, SIMULATION, THERMOCHEMICAL PROCESSES, WASTE MANAGEMENT, WASTE PROCESSING
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue