Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
Battaglia, Luigi; Gallarate, Marina; Peira, Elena; Chirio, Daniela; Solazzi, Ilaria; Giordano, Susanna Marzia Adele; Dianzani, Chiara; Gigliotti, Casimiro Luca; Riganti, Chiara, E-mail: luigi.battaglia@unito.it2015
AbstractAbstract
[en] Glioblastoma, the most common primary brain tumor in adults, has an inauspicious prognosis, given that overcoming the blood–brain barrier is the major obstacle to the pharmacological treatment of brain tumors. As neoangiogenesis plays a key role in glioblastoma growth, the US Food and Drug Administration approved bevacizumab (BVZ), an antivascular endothelial growth factor antibody for the treatment of recurrent glioblastoma in patients whose the initial therapy has failed. In this experimental work, BVZ was entrapped in solid lipid nanoparticles (SLNs) prepared by the fatty-acid coacervation technique, thanks to the formation of a hydrophobic ion pair. BVZ activity, which was evaluated by means of four different in vitro tests on HUVEC cells, increased by 100- to 200-fold when delivered in SLNs. Moreover, SLNs can enhance the permeation of fluorescently labelled BVZ through an hCMEC/D3 cell monolayer—an in vitro model of the blood brain barrier. These results are promising, even if further in vivo studies are required to evaluate the effective potential of BVZ-loaded SLNs in glioblastoma treatment. (paper)
Primary Subject
Source
Available from http://dx.doi.org/10.1088/0957-4484/26/25/255102; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Nanotechnology (Print); ISSN 0957-4484;
; v. 26(25); [11 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue