Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] Purpose: A technical challenge in clinical translation of GNP-mediated radiotherapy is lack of in-vivo imaging tools for monitoring biodistribution of GNPs. While several modalities (x-ray fluorescence, photoacoustic, etc.) are investigated, we propose a potentially more effective technique based on PET imaging. We developed Zn@Au NPs whose Zn core acts as positron emitters when activated by protons, while the Au shell plays the original role for GNP-mediated radiosensitization. Methods: Spherical Zn NPs (∼7nm diameter) were synthesized and then coated with ∼7nm thick Au layer to make Zn@Au NPs (∼20nm diameter). A water slurry containing 29mg of Zn@Au NPs was deposited (<10µm thickness) on a thin cellulose target and subsequently baked to remove the water. The cellulose matrix was placed in an aluminum target holder and irradiated with 14.5MeV protons from a GE PETtrace cyclotron with 4µA for 5min. After irradiation the cellulose matrix with the NPs was placed in a dose calibrator to assay radioactivity. Gamma spectroscopy using a HPGe detector was conducted on a very small fraction (<1mg) of the irradiated NPs. Results: We measured 158µCi of activity 32min after end of bombardment (EOB) using 66Ga setting on the dose calibrator (contribution from the cellulose matrix is negligible) which decreased to 2µCi over a 24hrs period. A gamma spectrum started one hour after EOB on the small fraction and acquired for 700sec showed a strong peak at 511keV (∼40,000 counts) with several other peaks (highest peak <1200 counts) of smaller magnitude. Conclusion: Strong 511keV gamma emission from proton-activated Zn cores can potentially be utilized to image the biodistribution of Zn@Au NPs using a PET scanner. The developed Zn@Au NPs are expected to retain radiosensitizing capability similar to solid GNPs, while observable through PET imaging for human-sized objects. Moreover, bioconjugated PET-detectable GNPs would allow a new option to perform molecular imaging
Primary Subject
Secondary Subject
Source
(c) 2015 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
ACCELERATORS, CARBOHYDRATES, COMPUTERIZED TOMOGRAPHY, CYCLIC ACCELERATORS, DIAGNOSTIC TECHNIQUES, EMISSION, EMISSION COMPUTED TOMOGRAPHY, GE SEMICONDUCTOR DETECTORS, LUMINESCENCE, MEASURING INSTRUMENTS, MEDICINE, NUCLEAR MEDICINE, ORGANIC COMPOUNDS, PHOTON EMISSION, POLYSACCHARIDES, RADIATION DETECTORS, RADIOLOGY, SACCHARIDES, SEMICONDUCTOR DETECTORS, SPECTRA, SPECTROSCOPY, THERAPY, TOMOGRAPHY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL