Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.042 seconds
Katsoulakos, Nikolas M.; Kaliampakos, Dimitris C., E-mail: katsoulakos@metal.ntua.gr, E-mail: dkal@central.ntua.gr2016
AbstractAbstract
[en] Mountainous areas have particular characteristics, whose influence on energy planning is explored in this paper, through a suitably tailored methodology applied to the case of Greece. The core element of the methodology is a linear optimization model with a “total cost” objective function, which includes financial, as well as external costs and benefits. Altitude proves to have decisive influence on energy optimization results, because it affects energy demand. The improvement of local energy systems provides greater socioeconomic benefits in mountainous settlements, due to the high shares of renewables and energy efficiency interventions in the optimal solutions. Energy poverty can be alleviated by redesigning local energy systems and the structure of the energy market. However, spatial and aesthetic restrictions, presented often in mountainous settlements, may affect the operational costs of energy systems, which is a crucial parameter for confronting energy poverty. Furthermore, the study indicates that it could be better to electrify remote areas, far from electricity grids, by decentralized systems than by grid expansion. The results of this study and the assumptions made about the way in which energy market should function, could be utilized for reconsidering energy policy measures, aiming at supporting sensitive societies to improve their development perspectives. - Highlights: •The influence of mountains' characteristics on energy planning was analyzed. •Optimal energy solutions present differentiations with respect to altitude. •Greater socioeconomic benefits by energy optimization in mountainous areas. •Remoteness favors the development of decentralized energy systems. •The study is based on data from Greece.
Primary Subject
Source
S0301-4215(16)30007-6; Available from http://dx.doi.org/10.1016/j.enpol.2016.01.007; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue