Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.014 seconds
AbstractAbstract
[en] Many statistical analyses are based on likelihood fits. In any likelihood fit we try to incorporate all uncertainties, both systematic and statistical. We generally have distributions for the nominal and ±1 σ variations of a given uncertainty. Using that information, Histfactory morphs the distributions for any arbitrary value of the given uncertainties. In this talk, a new morphing algorithm will be presented, which is based on information geometry. The algorithm uses the information about the difference between various probability distributions. Subsequently, we map this information onto geometrical structures and develop the algorithm on the basis of different geometrical properties. Apart from varying all nuisance parameters together, this algorithm can also probe both small (< 1 σ) and large (> 2 σ) variations. It will also be shown how this algorithm can be used for interpolating other forms of probability distributions.
Primary Subject
Source
DPG-Fruehjahrstagung 2016 (Spring meeting) of the section matter and cosmos (SMuK) together with the divisions gravity and relativity, radiation and medical physics, particle physics, theoretical and mathematical physics, and the working group philosophy of physics; DPG-Fruehjahrstagung 2016 der Sektion Materie und Kosmos (SMuK) gemeinsam mit den Fachverbaenden Gravitation und Relativitaetstheorie, Strahlen- und Medizinphysik, Teilchenphysik, Theoretische und Mathematische Grundlagen der Physik sowie der Arbeitsgruppe Philosophie der Physik; Hamburg (Germany); 29 Feb - 4 Mar 2016; Available from http://www.dpg-verhandlungen.de; Session: T 12.3 Mo 11:30; No further information available; Also available as printed version: Verhandlungen der Deutschen Physikalischen Gesellschaft v. 51(2)
Record Type
Journal Article
Literature Type
Conference
Journal
Verhandlungen der Deutschen Physikalischen Gesellschaft; ISSN 0420-0195;
; CODEN VDPEAZ; (Hamburg 2016 issue); [1 p.]

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL