Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
Shastri, Aparna; Singh, Param Jeet, E-mail: ashastri@barc.gov.in2016
AbstractAbstract
[en] Computational studies of electronically excited states of the acetone molecule [(CH_3)_2CO] and its fully deuterated isotopologue [(CD_3)_2CO] are performed using the time dependent density functional (TDDFT) methodology. In addition to vertical excitation energies for singlet and triplet states, equilibrium geometries and vibrational frequencies of the n=3 Rydberg states (3s, 3p and 3d) are obtained. This is the first report of geometry optimization and frequency calculations for the 3p_x, 3p_z, 3d_y_z, 3d_x_y, 3d_x_z, 3d_x_2_–_y_2 and 3d_z_2 Rydberg states. Results of the geometry optimization indicate that the molecule retains approximate C_2_V geometry in most of these excited Rydberg states, with the most significant structural change seen in the CCO bond angle which is found to be reduced from the ground state value. Detailed comparison of the computationally predicted vibrational wavenumbers with experimental studies helps to confirm several of the earlier vibronic assignments while leading to revised/new assignments for some of the bands. The important role of hot bands in analysis of the room temperature photoabsorption spectra of acetone is corroborated by this study. While the vibrational frequencies in excited Rydberg states are overall found to be close to those of the ionic ground state, geometry optimization and vibrational frequency computation for each excited state proves to be very useful to arrive at a consistent set of vibronic assignments. Isotopic substitution helps in consolidating and confirming assignments. An offshoot of this study is the interpretation of the band at ~8.47 eV as the π–3s Rydberg transition converging to the second ionization potential. - Highlights: • TDDFT based computational studies of excited states of acetone-h_6 and -d_6_. • Vertical excitation energies for singlet and triplet states. • Geometry optimization and vibrational frequencies of n=3 Rydberg states. • Comparison with experimental data; confirmation/revision of vibronic assignments. • Interpretation of the band at ~8.47 eV as the π–3s Rydberg transition.
Primary Subject
Secondary Subject
Source
S0022-4073(15)30284-3; Available from http://dx.doi.org/10.1016/j.jqsrt.2016.01.011; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Journal of Quantitative Spectroscopy and Radiative Transfer; ISSN 0022-4073;
; CODEN JQSRAE; v. 173; p. 92-105

Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue