Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.016 seconds
AbstractAbstract
[en] In general, classical measurement statistics of a quantum measurement is disturbed by performing an additional incompatible quantum measurement beforehand. Using this observation, we introduce a state-independent definition of disturbance by relating it to the distinguishability problem between two classical statistical distributions – one resulting from a single quantum measurement and the other from a succession of two quantum measurements. Interestingly, we find an error-disturbance trade-off relation for any measurements in two-dimensional Hilbert space and for measurements with mutually unbiased bases in any finite-dimensional Hilbert space. This relation shows that error should be reduced to zero in order to minimize the sum of error and disturbance. We conjecture that a similar trade-off relation with a slightly relaxed definition of error can be generalized to any measurements in an arbitrary finite-dimensional Hilbert space.
Primary Subject
Source
S0375-9601(16)30061-5; Available from http://dx.doi.org/10.1016/j.physleta.2016.03.046; Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue